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ABSTRACT 
We compute  the value of  the functor T of  Lannes on a certain class of  algebras 
over  the Steenrod algebra which includes polynomial  algebras. 

1. For a fixed odd prime p, denote by ~ and J//the categories of unstable 

algebras and unstable modules over the mod p Steenrod algebra. Denote by 

H*(-) the cohomology functor with coefficients in the field Fp. Let V be an 

n-dimensional vector space over F~. Lannes has introduced a functor Tv in the 

categories ~ and 0//which is left adjoint to the functor - ®H*(BV), i.e., one 

has natural isomorphisms 

Horn(M, N®H*(BV)) ~-- Hom(Tv(M), N), 

where Hom is taken in the appropriate category. On the category ag, Tv is an 
exact functor which commutes with tensor products ([3]). This implies that, 
for an algebra M i n  3~ r, the value of the functor Tv on the underlying module of  

M is the underlying module of the algebra Tv(M). If n = 1, we write Tinstead 
of Tv. It is clear that Tv coincides with the n-iterated composition T . . . . .  T. 

The usefulness of these functors comes from the fact that in many important 

cases they can be used to compute the cohomology of the mapping space 
map(BV, X). If X is a p-complete space such that H*(X) is of finite type, 
Lannes shows that the vanishing of Tv(H*(X)) in degree 1 is a sufficient 
condition for the existence of an isomorphism 

Tv(H*(X)) ~-- H*(map(BV, X)) 

induced by the adjoint of  the evaluation map. If f :  B V ~  Xis a map, then from 

the above isomorphism one can easily compute the cohomology of the 
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component of map(B F, X) containing f .  Let us consider the homomorphism 

to: Tv(H*(X))--+Fp which is adjoint to the homomorphism induced by f i n  

cohomology. If T O denotes the degree zero component of Tv, then Fp is a 

T°(H*(X))-module and we can consider 

Tfv(H*(X))= Tv(H*(X)) ~ Fp. 
ro(n*(x}) 

Then, Try (H*(X)) computes lhe cohomology of the space map(B F, X)f. 
During the Barcelona conference (April 1986) it became clear that Lannes 

theory can be used to provide alternative proofs of some of  the results 

presented. In this note, which 'was written after the conference, we work out the 

computation of the functor Tv for an important class of unstable algebras over 

the Steenrod algebra. As an immediate consequence, we obtain some of the 

results which were announced by Wilkerson in his talk in the BCAT ([2]). In 

particular, we prove the separability of the Adams-Wilkerson embedding. 

2. Let us denote by P(r) the graded algebra Fp[x], degx  = 2p r, with the 
unstable action of the mod p Steenrod algebra given by the embedding 

P(r) ~ Fp[t] = P(0) = H*(BS ~) 

given by x~-,,t i, i = p r .  Notice that the Steenrod operations P~, i =  

1 . . . . .  p '  - 1, as well as the Bockstein homomorphism, vanish on the genera- 
tor of  P(r). Let us denote by v and u the generators in degree 1 and 2 in 

H*(BZp). 

PROPOSITION 1. Let M ~ Df and let x E M ~ H*(BZp). Let us write x as 

(1) x =  ~', a i n u ' +  ~ bj@uJv. 
i>=o j~o 

Assume that fix = P~x . . . . .  PP'x = 0 and let N be the sub-A-module oJ 
M generated by ak, k = O  (p,+l). Then the coefficients a~ and b~, i>O,  
belong to N. 

PROOF. By applying the Bockstein homomo~h i sm to (1) one sees that 

bi = +- fla,+l. Since the ideal of M@H*(BZp)  generated by v is closed under 
the action of the Steenrod powers, we can assume, without loss of generality, 

that b~ = 0,  i _-> 0. 
We prove the proposition by induction on r. In the case r = 0 we have 
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0 = P l x  = ~ P l a i ® u i  + ~ iai(gu i+p-I 
i>=O i>~O 

and hence iai = - Plai + p_ ~. Let N, be the sub-A- module of Mgenerated by ai, 

i > s. For s big enough, the module N, vanishes. Let N be the sub-A- module of 
M generated by ak, k----0 (p). Assume Ns+~ cc_ N, NsqSN. We have s ~ 0  (p)  
and then a~ =P~a,+p-1 (modulo units) and a,~N~+p_l  C_N. This proves 
No = N and the proposition in the case r ~ 0. 

In the general case we have 

O = p p ' x =  ~, ( i)pp'-Sai(gu~+'(P-1). 
i>=o S 

S ~ O , . . . , p  r 

For each i we get the identity 

1) 
P" ai + pr 1 Plai+p-I + " " " + 0 PP'ai+p,<p-1) = O. 

Notice that, for i = O  (pr), i-~0 (pr+~), we have 

i ) 5 0  (p). 

Then the induction hypothesis and an argument similar to the one in the case 

r = 0 prove that a~, i > 0, belong to N. • 

COROLLARY 2. I f  (~ : P(r) ~ M (9 H*(BZp) is an A-algebra homomorphism 
then there are elemetfts a, b in M such that O(x) = a (9 1 + b (9 u p'. 

PROOF. If we write ~(x) as 

pr 

f)(x) = Y, ai (9 u i + Y, bj (9 uJv, 
i=0 

Proposition 1 implies that the coefficients a~, bj belong to the sub-A-module of 

M generated by a0 and ap,. Since apt has degree zero and a0 has maximal degree, 

we obtain that any other coefficient must vanish. • 

This corollary determines the functor T on the algebra P(r): 

T(P(r)) -~ T°(P(r)) ® e(r)  

where T 0, the degree zero component of T, is given by 
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T° (P( r ) )  ~= Fp[al/(a p - a), 

the free p-boolean algebra on one generator. Recall now that T commutes with 

tensor products ([3]) and that TM = M if M is concentrated in degree zero. If  

we denote by P(rl  . . . . .  rn) the algebra P(rO ® • • • ® P ( r , ) ,  we obtain 

Tv(P(r l ,  . . . , r,))~= T ° ®  P(r~ . . . . .  r,), 

T ° ~ F p [ a O ;  0 ~ i , j  <= n]/(a~ - ai) ). 

We will denote this algebra T O by A ( n ) .  The adjointion homomorphism 

Hom~c(A (n), Fp) --'~ Hom~c(P( r l , . . . ,  r,),  H * ( B V ) )  

can be described in the following way. I f f ( a i j ) =  2 0, then the adjoint of  f is 

given by f ' ( x i )  = Z 2 o uj. 

3. Let G be a subgroup of  GL, Fp. G acts linearly on P = P ( 0 , . . . ,  0) = 

Fp[t~ . . . . .  t,]. Since this action commutes with the action of  the Steenrod 

operations, the subalgebra Pa of  invariant elements inherits the structure of  an 

unstable algebra over the mod p Steenrod algebra. If g is an element of  G we 

denote by gu the entries in the matrix corresponding to g, in such a way that the 

action o fg  on a generator tj is given by  g .  tj = Z go ti. By naturality, the group G 

will also act on Tv(P) .  The action of an element g on a~j is given by 

g .a,j = Z gkiO~kj. This follows easily from the commutative diagram 

nom(A (n), Fp) ~ Horn(P, H * ( B V ) )  

Hom(A (n), F~) ~ Horn(P, H * ( B  V)) 

which gives the action of  g on the duals to o of the generators a~j. 

PROPOSITION 3. T v ( P  ~) ~ - - [ A ( n ) ~ P ]  a. 

PROOF. If M is any G- module it is clear that 

M ~ =  n k e r ( 1 - g ) .  
gEG 

Hence, if G is finite then any additive exact functor commutes with the 
invariant submodule functor. • 

4. If G acts linearly on P we can consider the homomorphisms 
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Pa --* P ~ H * ( B  V) 

where the second homomorphism is the one induced in cohomology by the 

canonical map B V - - , B T  ~. The composition homomorphism 0 induces a 

homomorphism 
co : Tv (P  c)  ~ Fp. 

We want to compute 

T~(P ~) = Tv(P G) ~ Fp. 
A(n) G 

First of  all, notice that the action of  the augmentation ~o on the generators aij of 

A ( n )  is given by og(a 0) = Oi: because, as one sees easily, a~ = ~ ogii for o90, the 

basis dual to a 0. 
We have a homomorphism 

given by 

TOv(PG) = [A(n)®PI G @ Fp~[A(n)®P] @ F p ~ P .  
A(n) G A(n) 

PROPOSITION 4. V is an i s o m o r p h i s m .  

PROOF. I fA  is a graded F:algebra such that A ° is a p-boolean ring (i.e. 
x p = x for all x in A 0) with finitely many maximal ideals 11 . . . .  , I , ,  then there 
is a natural decomposition of  A as a product of  connected graded algebras 

A , ( A / I I A )  X . ' .  X ( A / I n A ) .  

This decomposition corresponds to the decomposition of  a space as a disjoint 

union of  components and follows easily from the fact that, since A ° is 

p-boolean, the residue field is always Fp and any non-zero element is avoided 

by some maximal ideal. 

This decomposition is natural in the following sense. IfA ---B is an algebra 

homomorphism and I is a maximal ideal o fA °, then we have an homomor- 

phism A / I A  ~ B / J B  for any J E S p e c B  ° which lies over I. Assume A is a 

subalgebra of B. In this case, we easily see that A / I A  injects on B / J B  if, for 

instance, there is only one point of  Spec B ° over I. More in general, we get an 

injection if 
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A ( ' I J B c  ('] J'B. 
J'NA ~ I  

When we apply this decomposition to our case, we see that T~v(P c) and T~v(P ) 
are the direct factors of Tv(P G) and Tv(P) corresponding to the maximal 

ideal ker to. The spectra of the degree zero components can be identified with 

Hom~c(PC, H*(BV)) and Hom~c(P,H*(BV)), respectively. Hence, one 

sees that the fiber over I = ker to is formed by the ideals g J, for g E G and J 

any point of  the fiber. This shows that the above condition for a monomor- 

phism is satisfied and so the inclusion Pa c P induces a monomorphism 

T*v(eO)---, rOv(P ). 
To complete the proof of llhe proposition we will construct a section 

homomorphism 

O : P - . [ A ( n ) ~ P ]  ~ @ Fp. 
a(n) G 

We use the following universal construction. If  X = (xu) is a matrix whose 

entries are indeterminates, then there is a matrix Y = (Yu) whose entries are 

integral polynomials on the x 0 and such that X Y  = (det X)I  where I denotes 

the identity matrix. We define 1Lhe matrix .~ = (xu) as 

= y (xy )p -2  = (det X)P-:Y.  

The entries of ~" are integral polynomials on the indeterminates xij and so this 

universal construction can be done in any commutative ring. Notice that 

X Y  = YX. We obtain matrices (&u) and (gu). Notice that (gu) is the inverse 

matrix of (gu). It is not difficult to compute the action of an element G o f g  on 

the elements &u of the algebra A (n). We have 

(cO(go) = ( g u ) ( " u )  = (g ' ,  " u )  = ( g " ' ~ 0 ) ,  

and so 

g.ao = 2gjka~k. 

Let us consider, for i = 1 . . . . .  n, the element 

wi =-- ~ &otjEA(n)@P. 

For any g in G we have 

g,'wi = Y, (g "(~u)(g" tj) = Y, gjk&ikgsits = W~. 
j j ,k,s 
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Hence, the elements w~ belong to the invariant submodule [A (n)@P] ~. This 

allows us to define 

¢):P---.[A(n)@P] ~ ~ Fp, 
A(n) G 

O(ti) = wi ® 1. 

Notice that $ is a homomorphism of unstable algebras over the mod p 

Steenrod algebra. It remains only to check that ~q~ = 1. This follows from 

~(&0) = 6ij which is an immediate consequence of the definition of (&0). • 

5. The theorems of Adams-Wilkerson ([ 1]) and Wilkerson ([4]) show that 

the above computation determines the value of the functor Tv on a wide 

category of unstable algebras over the mod p Steenrod algebra. According to 

Wilkerson ([4]) if A in o~c is a connected integral domain of transcendence 

degree n and if moreover A is noetherian and integrally closed, then there is a 

group G in GLnFp and there are integers 0 < rl < • • • < r,, such that 

A = pG n P(q  . . . .  , r~). 

Hence: 

P g o r o s m o N  5. I f  A ~ : ~  satisfies the above conditions and ~):A 

H*(BV) is induced by the Adams-Wilkerson embedding, then T ~ A - ~  

e(rl, , r,) for some 0 < rl < . . .  < r 

PROOF. Notice that we can assume that G acts on P(rl . . . . .  r~) and A 

consists of the elements of P(q . . . . .  rn) which are invariant under the action of 
G. We have 

Tv(A) = Tv(P a) n Tv(e(r~ . . . . .  r.)) 

and we want to see that the same is true with T ~v" Write 

A = ( A ( n ) ® P )  c, B = A ( n ) ® P ( r ,  . . . . .  r.), C = A ( n ) ® P .  

Let J b e  the ideal of A(n) given by a~ and let I = A ( n )  G N J.  Then, as we have 

already discussed, we have inclusions 

(A/IA)---,(C/JC), (B/JB)---,(C/JC), (A n B)/I(A O B ) ~ A / I A  

and hence we have an inclusion 

j"  A n BII(A n B)---,A/IA n BIJB. 
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We want to prove that this is an isomorphism. Let a EA, b EB such that a ---- b 

(JC). We can assume that a ~ 0 (IiA) for any Ii ÷ I and b ~- 0 (~  B) for any Jj 

not over I. Recall that the fiber over I is formed by the ideals g J, g E G. Since a 

is invariant under G, we have: a ~ g b  (gJC). Hence, a EA n B and j is an 

isomorphism. • 

Lannes theory and the non..realizability of the algebras P(ri . . . . .  r.) for 

r. =g 0 as cohomology rings provide a proof of the following important result. 

THEOREM 6 (Dwyer-Miller-Wilkerson [2]). I f  A is a connected unstable 
algebra over the mod p Steenrod algebra ( p odd) which is an integral domain of  
finite transcendence degree and which is noetherian and integrally closed, then 
the separability of  the Adams- Wilkerson embedding is a necessary condition for 
A to be realizable as a cohomology ring. In other words, ifA is realizable, then A 
is an algebra o f  invariants. • 
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